1

Scientific, Regulatory and Behavioral Considerations of Hand Hygiene

2

3 Katherine M.J. Swanson^{*1*}, Mark Sampson², Donald W. Schaffner³, Dale Grinstead⁴, Michéle Samarya-

- 4 Timm⁵, Catherine Adams-Hutt⁶, and the Conference for Food Protection 2010-2012 Hand Hygiene
- 5 Committee[†]
- 6
- ⁷¹Ecolab Inc., 655 Lone Oak Drive, Eagan, MN 55121; ²Sterilox Food Safety, 162 Ash Way, Doylestown,
- 8 PA 18901; ³Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901; ⁴Diversey, Inc., 8310 16th
- 9 Street, Sturtevant, WI 53177; ⁵Somerset County Department of Health, PO Box 3000, 27 Warren Street,
- 10 Somerville, NJ 08876; ⁶ National Restaurant Association, 601 Pennsylvania Avenue, NW # 1505,
- 11 Washington DC 20004

^{*} Author for correspondence: Phone: +1 651.795.5943; Email: katie.swanson@ecolab.com ,

12 ABSTRACT

13 Addressing the effectiveness of hand hygiene strategies involves scientific, regulatory and 14 behavioral considerations. In the United States, norovirus is the pathogen reported most frequently in outbreaks associated with lapses in hand hygiene; however several bacterial pathogens have also been 15 16 implicated. Effectiveness of any hand hygiene regimen involves many factors, including the product type (e.g., soap, hand antiseptic), amount applied, application method, duration and pathogen of concern. 17 Handcare products making antimicrobial claims are regulated as drugs in the United States. Through 18 19 2011, no antimicrobial hand hygiene products for food handler applications have FDA-approved claims 20 for antiviral effectiveness. However, the antiviral profile of several commercially available products has 21 been assessed in peer-reviewed literature, demonstrating that some products can achieve significant 22 reductions. Hand hygiene behavioral issues involve use of proper procedure and a commitment to 23 perform the task, thus understanding human factors is important to enhance hand hygiene compliance. 24 Behavioral and risk assessment research that evaluates the magnitude of risk reduction achieved by 25 varying forms of hand hygiene actions (i.e., nothing, rinsing, hand sanitizing, washing, or washing and 26 brushing) would be useful to move from an all-or-nothing approach in every situation, to one recognizing 27 that different procedures may be suitable for different situations.

28 INTRODUCTION

The main purpose of washing hands is to cleanse the hands of soil, pathogens and chemicals that can potentially cause disease. Transmission of pathogenic bacteria, viruses and parasites to food from contaminated surfaces, raw food or ill workers by way of improperly washed hands continues to be a major factor in the spread of foodborne illnesses. In this report, hand hygiene products available to reduce the risk of spreading infectious agents are categorized as:

• handwashing agents (plain soaps or antimicrobial soaps)

• hand wipes (plain and antiseptic) and

• hand antiseptics (antiseptic waterless agents)

37 Handwashing with plain soap suspends microorganisms and mechanically removes them by38 rinsing with water. Plain bar soap, foam and liquid preparations are comprised of detergents with39 surfactant (surface-active agents), which increase the cleaning properties of water and gives the product40 the ability to remove soil from surfaces, such as human skin. Microbial reduction using plain soap is due41 to the physical removal of foreign material or microorganisms, not a biocidal effect.

An *antimicrobial soap* combines the cleaning action of plain soap (i.e., physical removal of foreign material) with antiseptic agents that kill microorganisms. The antimicrobial agents used in antimicrobial soaps (e.g., chloroxylenol, quaternary ammonium compounds, chlorhexidine gluconate, iodine/iodophors and triclosan) have an immediate effect that reduces the number of microflora on skin and in certain cases may exhibit residual or sustained activity that continues to reduce the number of microbial flora after the handwash is complete. The effectiveness of these agents is primarily directed toward vegetative bacteria.

Antimicrobial wipes are towelettes or paper towels that are saturated with an antimicrobial
 solution that has been shown to reduce the numbers of microorganisms on skin. The antimicrobial
 ingredient is typically isopropyl or ethyl alcohol and/or a quaternary ammonium compound. There are also
 some specialized products with other antimicrobial ingredients.

53 Hand antiseptics (also called hand sanitizers) are waterless agents with antiseptic properties that 54 decrease the number of microorganisms present. For the purposes of this paper, hand antiseptics do not 55 require the use of water. Alcohol-based hand antiseptics are the most common type and typically contain ethanol or isopropanol and may contain n-propanol or a combination of these agents. Hand antiseptics are typically not designed as hand cleansers and thus are usually intended to be used on visibly clean hands as a single application. However, most hand antiseptics contain emollients, emulsifiers and water, all of which can act as cleaning agents when assisted by hand-to-hand rubbing and physical removal with a paper towel, in a manner similar to a hand wipe.

61

62 FOODBORNE PATHOGENS ASSOCIATED WITH HAND HYGIENE-RELATED OUTBREAKS

The CDC (6) provides a list of infectious diseases that are transmitted through handling the food 63 64 supply, which is summarized in Table 1 and in Annex 3 Section 2-201.11 of the 2009 Food Code. Two 65 categories are identified – 1) those pathogens that are often transmitted by food when handled by an infected person and 2) those pathogens that are occasionally transmitted thorough handling by an 66 67 infected worker but usually transmitted by contamination at the source or in food processing or by non-68 foodborne routes. Those "often" involving infected workers include pathogens with low infective dose (e.g., the viruses, Salmonella Typhi and Shigella) and those that are shed in high numbers when an 69 70 active infection exists (e.g., the viruses, Staphylococcus aureus and Streptococcus pyogenes). The 2009 71 Food Code Sections 2-201.12 and 2-201.13 specify exclusion or restriction of food workers from a food 72 establishment when certain diagnoses or symptoms listed in Table 1 exist. Annex 3 of the 2009 Food 73 Code (page 337) specifically notes that "exclusion of food employees exhibiting or reporting diarrhea 74 symptoms is an essential intervention in controlling the transmission of norovirus from infected food employees' hands to RTE food items." This recognizes that even thorough hand hygiene may not be 75 76 sufficient to prevent transmission of disease when food is handled by symptomatic food handlers. 77 CDC (5) also published foodborne illness contributing factors that were reported for outbreaks 78 occurring from 1998-2002. In that time period, of the 3072 outbreaks for which contributing factors were 79 reported, 25% identified bare-hand contact, 20% identified infected persons and 6% identified gloved-80 hand contact as factors contributing to these outbreaks. Table 2 summarizes the CDC (5) data by etiology for foodborne illness outbreaks reported as being associated with hand contact (with or without gloves) or 81 82 handling by an infected person as a contributing factor. Norovirus was the dominant etiology for

83 outbreaks involving these contributing factors, and bacterial etiologies were reported for 40% of the bare-

hand contact outbreaks, 35% of gloved-hand outbreaks and 35% of infected person outbreaks involved
bacterial agents. Only one parasite (*Giardia intestinalis*) and no chemicals were reported to be associated
with hand hygiene related outbreaks in this time period.

87 It cannot be determined from these data how many outbreaks "involving infected persons or 88 carrier" included symptomatic food handlers, for which handwashing may not be adequate to prevent 89 spread of illness as previously discussed. It is interesting to note that for each of the pathogens listed by CDC as "often transmitted through food contaminated by infected persons" (see Table 1), the number of 90 91 outbreaks reported to be handled by an infected person was frequently much greater than the number 92 involving bare-hand contact. Conversely, for "pathogens occasionally transmitted by food contaminated 93 by an infected handler," the number of outbreaks associated with bare-hand contact was higher than the 94 number associated with infected persons handling food.

Vegetative bacterial pathogens are generally more easily inactivated by chemical agents used in antimicrobial hand care products than the viruses and parasites of foodborne illness concern. While bacterial spores are also more resistant than vegetative bacteria, sporeformers of foodborne illness concern must be in their vegetative state and grow in the food to a high level to present a food safety risk. Thus inactivation of spores is not a major concern for hand hygiene in a food handler setting.

This analysis suggests that norovirus is the most common pathogen associated with hand hygiene-related foodborne illness outbreaks. Thus when addressing "the efficacy/risk reduction strategies of alternative hand hygiene regimes compared to handwashing," norovirus should be considered.

103

104 METHODS TO EVALUATE EFFECTIVENESS OF HAND HYGIENE SOLUTIONS

Ideally, well-controlled and statistically valid epidemiological outcome studies would be available to determine the relative effectiveness of hand hygiene products and regimens. Unfortunately, these types of studies are very rare and pose fundamental design and execution challenges. As a result, the primary methods used to evaluate effectiveness of hand hygiene products are laboratory-based, including *in vivo* (using living subjects) and *in vitro* (not using living subjects) testing, and to a limited extent risk modeling.

Scientific Regulatory and Behavioral Considerations of Hand Hygiene

The type of test used to evaluate the effectiveness of hand hygiene solutions can have a 111 112 significant impact on the results generated. Because of this, it is important to understand how a test was 113 conducted when attempting to compare the effectiveness of hand hygiene solutions and it is difficult to 114 compare the results from one study to another. It is important to note that, the most common pathogen 115 associated with transmission of foodborne illness via hands, human norovirus, cannot be cultured in the 116 laboratory. Murine norovirus and feline calicivirus have been used as surrogates to estimate reductions in 117 infectivity, but the scientific debate on the "best" surrogate continues because the mode of inactivation for 118 different antimicrobial agents varies (e.g., 3, 18). Currently, human norovirus results can be studied using 119 polymerase chain reaction (PCR) technology, which reflects destruction of ribonucleic acid (RNA) as an 120 indirect measure of loss of infectivity. However, it is possible for a virus to lose infectivity without 121 destruction of RNA.

While standardized methods (e.g., ASTM, EN standards) exist for both *in vivo* and *in vitro* tests, methods used in the literature vary widely in their procedures and approach. This section provides a brief overview of the different types of tests used and the variation that can occur. It is not the intent of this report to recommend any specific type of test.

126 In vivo tests

In vivo tests evaluate performance of hand hygiene measures using the hands of human test
 subjects. Many different *in vivo* tests, using a wide variety of methodologies, have been used to evaluate
 the performance of hand hygiene measures. Key differences include use of an inoculum, handwash
 technique and sampling method.

131 Use of an inoculum. In some cases the area being washed is inoculated with a marker organism 132 (e.g., E. coli, Staphylococcus aureus or Serratia marcescens). Although Serratia is not commonly found 133 on hands, its red pigment makes it easy to distinguish from background flora when conducting tests. 134 Serratia is referred to as a "transient" hand microbe because it is only present for a short time on the 135 hands, typically on the surface of skin. This is in contrast to "resident" hand microbes that are almost always present on hands, sometimes deep in the skin tissue. The use of a marker organism like Serratia 136 137 can help to evaluate the performance of the handwash process on transient rather than resident flora, 138 and to standardize the starting concentration of microorganisms on the skin of the test subjects.

In some *in vivo* tests, no inoculum is used. The level and nature of microorganisms present on human skin varies from person to person and over time for a given individual. These factors must be taken into account when interpreting these test results. Montville and Schaffner (*16*) found that choice of the specific marker organism makes little difference, but that the choice between marker organisms and resident flora has a substantial impact on the results. According to their analysis, this appears to be primarily due to a difference in starting concentration. Quantifying differences is easier when starting with a uniformly high concentration because it helps to keep endpoint numbers above the level of detection.

Handwash technique. Standardized in vivo tests use a prescribed handwash method, but not all
 studies in the literature use standardized test methods. Some allow the test subject to wash their own
 hands and others have a technician conduct the wash. This can influence the variation observed in
 procedures practiced by human subjects. More variation is typically observed when each subject
 performs the hand hygiene procedure.

Sampling method. There are many ways to enumerate the organisms remaining on the skin after washing. For example, in the *glove juice test*, the test subject dons disposable gloves, a sampling fluid is added to the gloves, the subject's hands are massaged and the microbes in the sampling fluid in the glove are enumerated. Other sampling techniques include collecting wash fluid into basins and enumerating organisms in the collected fluid, rubbing fingertips in Petri dishes containing a sampling fluid, placing a cylinder on the skin, adding a sampling fluid to cylinder and scrubbing the skin using a sterile swab, or simply pressing the finger tips to an agar plate.

The large inherent variability with any *in vivo* test coupled with differences in enumeration methodology leads to one of the major disadvantages of *in vivo* testing – conflicting, inconsistent and often non-comparable results. The variability also contributes to another disadvantage – cost. Multiple subjects are needed to estimate variability and it is not uncommon for a single test on a single subject to cost in excess of a thousand dollars. The variability of *in vivo* testing often requires high numbers of test subjects to statistically demonstrate differences, thus studies can be quite expensive. Use of pathogens for *in vivo* testing presents ethical issues that must be carefully considered.

165 Despite the disadvantages associated with *in vivo* hand hygiene efficacy testing, an advantage is 166 that *in vivo* testing may provide information on how effectively a hand hygiene procedure will reduce

Scientific Regulatory and Behavioral Considerations of Hand Hygiene

Page 7 of 30

microbial levels on hands in actual use. However, *in vivo* tests described do not prove that a tested hand hygiene procedure will actually prevent or reduce illness in the real world. At best, it provides a surrogate endpoint for the hand hygiene procedure's ability to prevent or reduce the risk of disease. Clinical trials to evaluate prevention of disease are rarely, if ever, performed.

171 In vitro tests

172 In vitro studies do not involve human or animal test subjects. The most common type of in vitro 173 test for hand hygiene products is the suspension or "time-kill" test. In these studies, the test 174 microorganism is suspended in a solution containing the test product. After a specified exposure time, an 175 aliquot of solution is removed, the antimicrobial activity is typically neutralized and any surviving 176 microorganisms are determined. As with in vivo tests, many variables must be considered for in vitro 177 testing, including product and test organism concentrations, types of organisms, the presence and 178 concentration of interfering substances such as soil or hard water, the use of different temperatures, 179 different neutralizer systems and various exposure times. Typically, greater reductions are observed for in 180 vitro tests than for in vivo tests because of the direct exposure of the microorganism to the antimicrobial 181 agent. Even seemingly trivial variations in test procedures, such as growing the inoculum on solid versus 182 liquid media or the number of times the test cultures have been transferred, can affect the results. As with 183 in vivo testing, this can make comparison of results between different studies difficult.

An advantage of *in vitro* tests is that they are relatively easy and inexpensive to do. This makes it easier to study more organisms and to collect sufficient replicates in a reproducible manner to demonstrate statistical significance even when the data are variable. The largest drawback of *in vitro* testing is that they are further removed from the clinical endpoint than *in vivo* tests. Just as an *in vivo* test is not a perfect predictor of a clinical endpoint, so an *in vitro* test is not a perfect predictor for an *in vivo* result.

The CFP 2010-2012 Hand Hygiene Committee summarized advantages and disadvantages of *in vivo* and *in vitro* efficacy testing in Table 3. Both types rely on enumeration of viable microbial targets to measure the extent of reduction after a treatment, which is possible for many pathogens involved in foodborne illness transmitted via hands, but currently not human norovirus.

195 **EFFICACY OF HAND HYGIENE APPROACHES AT REMOVING PATHOGENS AND REDUCING RISK**

196 As discussed above, the wide variety of test methods used to study hand hygiene procedures 197 makes it very difficult to compare the efficacy of handwashing to alternative hand hygiene regimes. 198 Recent peer-reviewed papers summarize much of the available science on this topic. Todd et al. (23) 199 provide an extensive review of nearly 250 publications addressing the impact of washing and drying of 200 hands to reduce microbial contamination. Montville and Schaffner (15) looked more specifically at a 201 guantitative comparison of antimicrobial versus non-antimicrobial hand soaps and evaluated the impact of 202 methodological differences in the extent of reduction achieved. Both of these reviews reported that many 203 factors influence the efficacy of handwashing, including the type and volume of soap used, friction, and 204 duration of washing. Some of the findings of these reviews include:

• Using <1mL portion of hand soap appeared to be less effective than using 1ml or more.

Vigorous washing is an important factor in that it removes or loosens microorganisms with
 mechanical action.

• On average, use of antimicrobial soaps results in fewer microorganisms on hands.

Todd et al. (23) found that duration of handwashing is an important factor and duration of at least 15
 seconds is needed. They concluded that while washing up to 30 seconds may provide somewhat
 greater microbial removal from hands, this further reduction may not be meaningful as it involves
 removing resident microorganisms that are not generally associated with transmission of foodborne
 illness. Various studies have indicated that the average wash duration by the general public and food
 handlers is about 10 seconds, in spite of the 15 second recommendations.

Frequency of handwashing is also an important factor. Several studies suggest that while most
 individuals (>85%-95%) self-report washing hands after using the bathroom, observational studies
 indicated that the frequency (particularly among men) was considerably lower (ca. 70%). In food
 settings the frequency of handwashing at appropriate times may be as low as 30% during peak
 business hours. However, training and specific interventions could increase that to over 50%.

• Temperature has relatively little impact on the efficacy of handwashing. Temperatures that are too

high (over 110°F) increase the risk of skin damage and reduce handwashing compliance.

Drying, particularly using towels, removes ca. 90% of the organisms that remain after washing.
 Removal of microorganisms by air dryers is more questionable. Moreover, the time needed to dry
 hands with many air drying systems is often longer than towel drying, so hands often remain wet for
 people who do not wait. Wet hands have been shown to harbor and transfer organisms more easily
 than dry hands. There is also some concern that the airflow from certain air driers may be a source
 of contamination.

Todd et al. (24) provides a recent comprehensive, peer review of waterless hand antiseptics 228 229 relevant to food handlers, including 150 references. They found that product type, concentration, volume 230 and contact time influenced results. They concluded that "alcohol-based antiseptics should be combined 231 with regular handwashing schedules and should not replace handwashing and drying or the use of 232 fingernail brushes." In regard to wiping methods, they indicated that food handlers may ignore some of 233 the steps in two or three stage procedures, thus they did not recommend such procedures in general. 234 However, they also stated that "because [two or three stage] wipe methods tested have been more 235 effective than soap and water, they should be considered feasible, practical hand hygiene interventions 236 for remote food service situations or where water availability is limited."

237 The effectiveness of hand antiseptics against human norovirus was questioned by Todd et al. 238 (24) based on the available literature at the time of their review. However, Park et al. (18) compared the 239 effectiveness of seven hand antiseptics against murine norovirus (MNV) and feline calicivirus (FCV) as 240 potential surrogates for human norovirus. One ethanol-based and one triclosan-based hand antiseptic reduced both MNV and FCV by >2.6 and \geq 3.4 logs, respectively, using *in vitro* infectivity test methods. 241 Four products demonstrated effectiveness against either MNV or FCV. The chlorhexidine product was not 242 243 effective against either virus. Thus effectiveness varied among the different hand antiseptics. Liu et al. (14) studied inactivation of human norovirus using the *in vivo* finger pad test, reporting log reductions of 244 245 RNA from 0.10 to 3.74 for six commercially available hand antiseptic products. This study also illustrated 246 the large variation that can be observed among hand antiseptic products. These two studies did not include a measure of the reduction that could be achieved with handwashing treatments. Further, some of 247 248 the products studied may not have "Food Code" compliant ingredients.

Scientific Regulatory and Behavioral Considerations of Hand Hygiene

Page 10 of 30

A number of *in vivo* studies have included handwashing and hand antiseptics in the same investigation. Some of these studies concluded that hand antiseptics were ineffective at reducing microbial levels on hands while others suggested that they are effective in either reducing numbers or reducing transfer of infection. Two examples of studies that concluded hand antiseptics were ineffective include the following.

Courtenay et al. (7) compared washing with soap and water, rinsing with either warm or cool water, and ethanol-based hand antiseptics for reducing *E. coli* on hands. The soap and water washing
 demonstrated >2.6 log reduction, which was significantly greater than solely rinsing with warm
 water (2.2 log reduction), rinsing with cool water (1.5 log reduction) or ethanol-based hand
 antiseptic (0.2-0.7 log reduction).

• Lin et al. (13) studied the effect of six handwashing techniques on E. coli and FCV levels inoculated 259 260 under natural and artificial fingernails. Washing techniques included use of tap water alone, soap 261 and water, antimicrobial soap, hand antiseptic, soap plus hand antiseptic, and soap plus nailbrush. 262 Only reductions in counts under the fingernails were reported. For *E. coli*, no significant difference was noted between any of the washing techniques except washing with soap using a nailbrush. 263 264 The nailbrush technique reduced the *E. coli* population approximately 2.5 – 3 logs while other 265 techniques reduced the population $1 - 2 \log s$. For FCV, soap with nailbrush washing also significantly reduced the population greater than 2 logs for both nail types. The hand antiseptic 266 treatment resulted in a significantly lower reduction of FCV for both nail types (<1 log) than other 267 268 treatments. Interestingly, there was no significant difference between log reductions of either E. 269 coli or FCV from finger nails when tap water alone was compared to any of the handwashing 270 methods using soap without a nail brush.

271 Conversely, a number of studies concluded that the use of hand antiseptics reduced organisms 272 on hands the same or better than washing alone. For example:

Brown et al. (2) evaluated reductions of microbial counts on uninoculated hands following washing
 with plain soap, antimicrobial soap or use of an alcohol-based hand antiseptic. Fingers were
 touched to agar plates before and after treatment, and qualitative assessment of the number of

Scientific Regulatory and Behavioral Considerations of Hand Hygiene

Page 11 of 30

bacteria present was determined. The alcohol-based hand antiseptic reduced the relative counts
significantly more than the plain or antimicrobial soap treatments.

Schaffner and Schaffner (22) determined the effectiveness of an alcohol-based hand antiseptic on
 hands contaminated with a nonpathogenic surrogate for *E. coli* O157:H7, where the source of the
 contamination was frozen hamburger patties. The effectiveness of the hand antiseptic was similar
 to that for handwashing and glove use previously reported. The person-to-person microbial
 reduction variability from hand antiseptic use is similar to published data for glove use and was less
 variable than published data on handwashing effectiveness.

Paulson (*19*) studied the reduction of *Serratia marcescens* for hand hygiene regimens including
 plain lotion soap, antimicrobial lotion soap, alcohol-based hand antiseptic, and combinations of
 these using the glove juice method. The alcohol treatment alone or in combination with
 handwashing, reduced the population almost 4 logs. The soap treatments alone provided a 2 – 3
 log reduction in *Serratia* counts and there was no statistically significant difference between
 antimicrobial and plain soap treatments, although the antimicrobial treatment was consistently
 higher. A combined treatment was recommended.

Michaels et al. (*15*) studied the impact of varying volumes of alcohol-based hand antiseptic on
 reducing inoculated transient microflora from previously washed hands, as well as the impact of the
 hand antiseptics on reducing levels of transient flora from under finger nails. Levels of hand
 antiseptic at 3mL or 6mL resulted in a significant reduction of transient flora over washing alone,
 while lower levels did not. Consistent with the results reported by Lin et al. (*13*), washing hands
 with a nail brush was required for significant reductions under fingernails.

• Restaino and Wind (*20*) reviewed literature available at the time and reported that appropriate alcohol preparations were more effective in reducing microbial counts that handwashing alone.

They also commented on the need to use products that are non-irritating to the skin.

It is clear from the studies summarized that there is a large amount of variability between and
 within studies with behavioral aspects frequently compounding interpretations of data. Montville and
 Schaffner (*16*) concluded that "The inherent variability in handwashing seen in the published literature

303 underscores the importance of using a sufficiently large sample size to detect difference when they304 occur."

Few studies have attempted to assess the effect of hand antiseptics from a risk reduction 305 306 perspective. Bidawid et al. (1) studied the transfer of feline calicivirus (FCV) from fingertips to a variety of 307 surfaces. Finger pads were contaminated with FCV, allowed to dry, and then touched to various surfaces 308 to evaluate the percent of transfer. Results (see Figure 1) demonstrated that treating hands with water, 309 soap and water, or alcohol significantly reduced the percentage transferred, with less than 1% transferred 310 following handwashing or a water rinse, ca. 1-3% transferred after treatment with alcohol, and 13-48% 311 transfer if no hand hygiene intervention was used. While alcohol treatments were not as effective as 312 soap and water or water alone, all of these hand hygiene interventions were significantly more effective 313 than no hand hygiene treatment at all.

314

315 **REGULATORY REQUIREMENTS RELATED TO EFFICACY OF HAND HYGIENE PRODUCTS**

316 Approval process

317 Hand antiseptics that meet specific criteria described in Section 2-301.16 of the 2009 Food Code 318 may be applied "only to hands that are cleaned as specified under Section 2-301.12" in retail and 319 foodservice establishments. Annex 3 - Section 2-301.16 of the 2009 Food Code explains that hand 320 antiseptics are drug products that must comply with FDA Center for Drug Evaluation and Research 321 (CDER) regulations, and provides more information on where approved products are listed as well as 322 other requirements not related to the effectiveness of the products against foodborne pathogens. 323 As drugs, hand antiseptics must be demonstrated to be safe and effective. This can be 324 accomplished by one of two means: 325 1. The hand antiseptic may be approval by FDA under a new drug application (NDA). Drugs 326 approved through this route are listed in Approved Drug Products with Therapeutic Equivalence 327 Evaluations, also known as the "Orange Book" (11).

The hand antiseptic may have an active ingredient identified by FDA (9) in the Tentative Final
 Monograph (TFM) for Health-Care Antiseptic Drug Products for OTC Human Use in the

Scientific Regulatory and Behavioral Considerations of Hand Hygiene

Page 13 of 30

330

331

handwash category, be listed with FDA as a drug, and comply with other relevant drug requirements.

332 The TFM specifies the active ingredients that can be contained within handwash products, as well 333 as labeling, product testing and other general requirements. The in vitro and in vivo testing provisions in 334 the TFM are well detailed and list specific organisms that products can make claims against. There is 335 also a clinical study requirement depending on the final claim. The TFM antimicrobial spectrum tests 336 determine the efficacy of products using Minimum Inhibitory Concentration (MIC) against 25 laboratory strains and 25 fresh clinical isolates included in a specific list of vegetative bacteria and the yeast 337 338 Candida. Time kill tests are also required using "standard ATCC strains identified for the MIC tests. The 339 TFM also requires an *in vivo* handwash assay using Serratia as the test organism. There are currently no 340 virus tests listed on the TFM and therefore antiviral hand hygiene claims are not available through the 341 TFM, despite the fact that as noted above, norovirus is by far the pathogen reported most frequently in 342 outbreaks where inappropriate application of hand hygiene regimens were noted.

343 For hand antiseptics, the TFM classifies alcohol 60–95% and povidone iodine 5–10% as 344 Category 1 - Generally Recognized as Safe and Effective. Many potential active ingredients for hand 345 antiseptics including triclosan, triclocarban, benzalkonium chloride, benzethonium chloride and 346 parachlorometaxylenol, are classified in Category III, requiring more data for final determination on safety 347 and efficacy. Pending a Final Monograph, products based upon ingredients classified as Category III can be marketed provided they meet the performance testing requirements of the TFM. Premarket approval 348 through the New Drug Application (NDA) process is required for products that contain active ingredients 349 350 not listed in the TFM.

351 **FDA guidance on hand antiseptics**

While the CDC recommends alcohol-based hand gels as a suitable alternative to handwashing for health care personnel *"if hands are not visibly soiled*" (*4*), FDA (*10*) clarified that this recommendation is not applicable to food establishments. This exclusion is based on the differences in controlling common nosocomial pathogens in health care settings and common foodborne pathogens in retail and foodservice settings. FDA (*10*) also highlights that the pathogens most commonly transmitted by hands in health care

settings differ from those in retail and food service settings, and the types and levels of soil on the hands 357 358 of health care workers differ from foodservice/retail workers. The FDA (10) factsheet concluded:

359 "Proper handwashing, as described in the Food Code continues to serve as a vital and necessary 360 public health practice in retail and food service. Using alcohol gel in place of handwashing in retail 361 and food service does not adequately reduce important foodborne pathogens on foodworkers' 362 hands. Concern about the practice of using alcohol-based hand gels in place of handwashing with soap and water in a retail or food service setting can be summarized into the following 363 364 points:

365

 "Alcohols have very poor activity against bacterial spores, protozoan oocysts, and certain 366 nonenveloped (nonlipophilic) viruses; and

• "Ingredients used in alcohol-based hand gels for retail or food service must be approved food 367 368 additives, and approved under the FDA monograph or as a New Drug Application (NDA); and

369 "Retail food and food service work involves high potential for wet hands and hands 370 contaminated with proteinaceous material. Scientific research questions the efficacy of alcohol

371 on moist hands and hands contaminated with proteinaceous material."

372 It is important to note that even in health care settings, alcohol-based hand gels are to be used as 373 an alternative to handwashing "only if hands are not visibly soiled" according to CDC (4).

374 State and local jurisdictions

At least one regulatory jurisdiction allows the use of alternatives to Food Code compliant 375

376 handwashing in certain settings where water is limited (17). It is important to understand the specific

377 situations where such alternatives are allowed. Research on the impact of adoption of alternative

378 procedures on hand hygiene compliance and potentially case control studies to investigate public health

379 outcomes of such programs would be useful to further inform the discussion on alternatives to

380 handwashing.

381 **Regulatory status summary**

382 Hand care products with antimicrobial claims are considered to be drugs, thus approval and

383 registration are under the regulatory jurisdiction of FDA's Center for Drug Evaluation and Research.

384 Antiviral hand hygiene claims are not available through the Tentative Final Monograph and to date no US antimicrobial hand care product with virucidal claims for food handler application has been approved
through the New Drug Application (NDA) process. As a drug, antimicrobial hand care products should be
used following label instructions. FDA's Center for Food Safety and Applied Nutrition provides guidance
through the *Food Code* on when and where hand hygiene practices should be applied.

389

390 COMPLIANCE ISSUES AND BEHAVIORAL ASPECTS OF HAND HYGIENE

391 As previously discussed, many factors such as time, temperature, friction, product volume, product type, etc., influence the effectiveness of hand hygiene regimes. At the same time, motivating food 392 393 workers to apply proper hand hygiene procedures at the right time is an important food safety need. Thus, 394 procedures are important for effective hand hygiene. Operators make their final choice of protocols based 395 on the requirements in the Food Code guidance and their risks, based on their customer mix, menu, 396 facilities and system control. There is no one-size-fits-all protocol for the wide range of food service and 397 retail establishment practices that exist. Procedures should be selected to assure their minimum 398 cleanliness levels are maintained.

The Committee identified barriers to proper handwashing behaviors by discussing the question "If hand hygiene (hand antiseptic) was allowed in place of handwashing, would there be a significant increase in desired behaviors, either for use: 1) in place of handwashing or 2) in addition to handwashing?"

For this exercise, the Committee considered only behaviors and *not* necessarily effectiveness. The Committee discussed which factors encourage or discourage desired handwashing behaviors for both traditional soap and water wash, and use of approved hand antiseptic. Information reported in Tables 4-6 is based on expertise of the Behavior Sub-committee of the CFP Hand Hygiene Committee, with review by the full committee. No quantitative or qualitative data were reviewed during the Subcommittee's discussion.

Factors that may either encourage or discourage *how* handwashing or hand antiseptic behaviors performed are listed in Table 4. Many of the barriers apply equally to how hand hygiene is performed for either handwashing or hand antiseptic use. Perceived speed of application for use of single step hand antiseptic applications may remove a potential barrier that exists for handwashing. Hand antiseptics may 413 also remove barriers associated with proximity to the supplies need to perform the task. While the issue of 414 training applies equally to both types of hand hygiene, it was noted that much emphasis has been placed 415 on the proper handwashing technique. This may vary for different hand antiseptic applications and may 416 be less obvious (e.g., single application versus two-step process; need to fully cover fingers, finger tips 417 and nail area).

418 Factors that may either encourage or discourage when desired handwashing or hand antiseptic 419 behaviors are appropriate are listed in Table 5. Again, many potential barriers apply equally to both hand 420 hygiene regimens. The perceived need is an area where differences exist. Some workers wash their 421 hands when they are heavily soiled from a self-protection standpoint. Conversely, single step hand 422 antiseptics are typically designed to be used on visibly clean hands; therefore the visual cue of hands 423 looking dirty does not apply. The sub-committee thought that there were opportunities to reduce 424 confusion on when to wash hands or use hand antiseptics, for example when used with gloves (see the 425 section on when alternatives may be appropriate).

Factors that may either encourage or discourage regarding *why* to perform hand hygiene are listed in Table 6. Communication of the reasons why hand hygiene should be performed is very important for employee acceptance and increases the likelihood that proper hand hygiene will be performed. Most of the factors that can encourage hand hygiene behaviors apply equally to both washing and antiseptic use. However, explaining why there are different considerations for when hand antiseptics are appropriate, may cause confusion and thus create a barrier to compliance. This type of communication must be planned carefully.

433

434 PUBLIC HEALTH BENEFIT OF IMPROVED HAND HYGIENE COMPLIANCE

435 Several studies have evaluated the use of alcohol-based hand sanitizers in reducing infection
436 rates in a variety of settings, including schools, day care settings, hospitals and long term care facilities.
437 Two examples described below to illustrate the type of information that can be gained.

Hilburn et al. (12) studied use of alcohol-based hand sanitizers in acute care facilities and reported
 a 36.1% decrease in infection rates when alcohol-based products were used. Key factors cited to
 contribute to this improvement included enhanced effectiveness against causative agents and

increased hand care compliance because products were easy to use and gentle to the skin, which 441 442 removes a barrier for hand hygiene application. The CFP Hand Hygiene Committee notes that 443 these results may not be immediately transferable to food handling settings because the agents. 444 and likely the hand sanitizer products, differ. However, research on compliance in foodservice 445 settings may be beneficial to determine if a similar improvement is noted.

 Sandora et al. (21) studied use of alcohol-based hand sanitizer coupled with hand hygiene 446

447 education with children enrolled in 26 child care centers. They monitored transfer of secondary

illness to people in the home. The CFP Hand Hygiene Committee recognizes that the primary

449 mode of transmission in this study is person-to-person and that the pathogens involved may not

450 necessarily be foodborne pathogens. However, the secondary illnesses were significantly lower for

451 families with alcohol-based hand sanitizers in the home compared to control families.

452 While the Hilburn et al. (12) "clinical end point" data demonstrate a benefit from hand sanitizers in 453 clinical settings, the study was confounded with many other factors such as training, other interventions 454 and increased handwashing. Therefore it is difficult to determine the effect of the hand sanitizers alone. 455 Respiratory illness and gastroenteritis are seasonal events that occur with some frequency in institutional

456 type settings. Foodborne illness outbreaks are less frequent thus conducting these types of studies

457 specifically for food handing considerations will be problematic.

458 Settings where alternatives to handwashing may be appropriate

The Committee considered the information above and practical aspects of preparing, holding and 459 460 serving food in its consideration of identifying settings where alternatives to handwashing are appropriate. 461 From a practical and behavioral matter, the Committee thought it useful to clarify situations when and 462 where alternatives to handwashing, such as hand antiseptics are not the best option. These include:

- Anywhere there is a properly functioning hand sink 463
- 464 After toilet use

- 465 • At the start of a shift
- 466 After lunch break
- 467 Between handling raw and RTE foods
- · After sneezing into hands 468

- If person has cuts, skin infections
- When hands look or feel soiled
- The Committee also recognized that there are situations where alternatives to handwashing may

be appropriate as a risk reduction strategy. For example, when hands are not visibly soiled hand

- 473 antiseptics may *potentially* be an option:
- Between glove use
- After touching hair
- After coughing / sneezing / drinking
- In areas where there is environmentally no water
- In water outages / boil water situations
- During temporary events
- In farm stands
- For mobile vendors

482 The Committee recognized that there are water-short situations where the specific dual step hand 483 cleanser-sanitizer protocol (8) may be a potential alternative to water/soap handwashing as a risk 484 reduction strategy. Some may question if providing an alternative may drive operators to use hand-485 antiseptics in place of traditional handwashing. The product costs of alcohol washing versus water 486 washing will strongly favor traditional handwashing where running potable water is conveniently available. The committee was unable to make specific recommendations. However, given time and integration of 487 488 scientific and behavioral considerations, specific recommendations may be possible using a risk 489 management approach. 490 491 **RESEARCH NEEDS**

- Much of the research conducted on hand hygiene is done in areas other than food-related
 settings. There is a need for such studies to be conducted to inform decision making. Potential questions
 that could be addressed through research include:
- If hand antiseptic use was allowed in lieu of soap and water handwashing, would there be a
 significant increase in desired behaviors and would this reduce foodborne illness?

- Does providing options (soap and water vs. alternative hand hygiene methods) in foodservice or
- 498 retail settings increase real-world compliance? If so, what is the public health benefit?
- Can studies on hand hygiene behaviors in hospitals be extrapolated to foodservice environments?
- What handwashing / hand hygiene options increase frequency of use?
- Why are food handlers not washing their hands?
- What is the range of temperatures that are considered to be comfortable for handwashing?
- Can new risk assessment and risk management models be applied to hand hygiene in food services settings to quantify the changes in risk when different interventions are applied?
- Can case-control epidemiological studies be conducted to study hand hygiene related foodborne
- 506 illness outbreaks comparing regulatory jurisdictions allow the use of alternatives to handwashing, to
- 507 those that do not?
- What is the clinical endpoint effect of various hand hygiene practices in a food setting?
- 509 Data supported answers to the above questions would help inform decision making on proposing 510 alternatives to handwashing in certain situations to protect public health.
- 511

512 ACKNOWLEDGEMENTS

513 This report was extracted from the report of the Conference for Food Protection 2010-2012 Hand Hygiene

514 Committee. Authors were Chairs or Co-chairs of Sub-committees that addressed scientific, behavioral

and regulatory issues. Individuals from the Hand Hygiene Committee that voted for publication of this

516 report included the following:

517 Katherine M.J. Swanson, Hand Hygiene Committee Co-chair and Ecolab Inc.; Mark Sampson, Hand

518 Hygiene Committee Co-chair, Regulatory Sub-committee Co-chair, and Sterilox Food Safety; Donald

519 Schaffner, Science Sub-committee Co-chair and Rutgers University; Dale Grinstead, Science Sub-

520 committee Co-chair and Diversey Inc.; Michele Samarya-Timm, Behavior Sub-committee and Somerset

- 521 County (NJ) Department of Health; Catherine Adams-Hutt, Regulatory Sub-committee Co-chair and
- 522 National Restaurant Association representative; Thomas Bell, Procter and Gamble; Margaret Binkley, The
- 523 Ohio State University; Patrick J. Brown, Great Atlantic and Pacific Tea Company; John C. Chrisman,
- 524 Darden Restaurants Inc.; Michael J. Dolan, GOJO Industries, Inc.; Marlene Gaither, Coconino County

525	(AZ	Z) Health Department; Courtney Halbrook, Yum! Brands, Inc.; Christina Johnson, Publix Supermarkets;
526	The	omas Johnson, Johnson Diversified Products, Inc.; Terrence Kennedy, Starbucks Coffee Company;
527	Jar	nes Mann, Handwashing for Life Institute; Eric Moore, Aramark; Erin Palumbo, Supervalu-Shaw's
528	Su	permarkets; Andrew Plante, Brinker International; Angela Sanchez, CKE Restaurants Inc.; Aaron
529	Sm	ith, Stop and Shop Supermarkets; Daniel Tew, Yum! Brands, Inc.; Linda Zaziski, independent.
530		
531	RE	FERENCES
532	1.	Bidawid, S., N. Malik, O. Adegbunrin, S.A. Sattar, and J.M. Farber. 2004. Norovirus cross-
533		contamination during food handling and with feline calicivirus as a surrogate. J. Food Prot. 67:103-9.
534	2.	Brown, J.M., J.S. Avens, P.A. Kendall, D.R. Hyatt, and M.B. Stone. 2007. Survey of consumer
535		attitudes and the effectiveness of hand cleansers in the home. Food Prot. Trends 27(8): p. 603-11.
536	3.	Cannon, J.L., E. Papafragkou, G.W. Park, J. Osborne, L. Jaykus, J. Vinjé. 2006. Surrogates for the
537		study of norovirus stability and inactivation in the environment: a comparison of murine norovirus and
538		feline calicivirus. J. Food Prot. 69(11):2761-5.
539	4.	CDC (Centers for Disease Control and Prevention). 2002. Guideline for hand hygiene in health-care
540		settings: recommendations of the healthcare infection control practices advisory committee and the
541		HICPAC/SHEA/APIC/IDSA hand hygiene task force. Morb. Mort. Wkl. Rep. 51(RR-16):32. Available
542		at: http://www.cdc.gov/mmwr/PDF/rr/rr5116.pdf. Accessed 26 October 2011.
543	5.	CDC. 2006. Surveillance for foodborne-disease outbreaks – United States, 1998-2002. Surveillance
544		Summaries: Morb. Mort. Wkl. Rep. 55 (SS10):1-34.
545	6.	CDC. 2009. Diseases transmitted through the food supply. Federal Register 74 (224):61151-2.
546	7.	Courtenay, M., L. Ramirez, B. Cox, I. Han, X. Jiang, and P. Dawson. 2005. Effects of various hand
547		hygiene regimes on removal and/or destruction of Escherichia coli on hands. Food Service Technol. 5
548		(2-4):77-84.
549	8.	Edmonds, S.L., J. Mann, R.R. McCormack, D.R. Macinga, C.M. Fricker, J.W. Arbogast and M.J.
550		Dolan. 2010. SaniTwice: a novel approach to hand hygiene for reducing bacterial contamination on
551		hands when soap and water are unavailable. J. Food Prot. 73 (12):2296–300.

Scientific Regulatory and Behavioral Considerations of Hand Hygiene

- 552 9. FDA (US Food and Drug Administration). 1994. The tentative final monograph (TFM) for health-care
- antiseptic drug products for OTC human use. *Federal Register* 59 (116):31402-52. Available at:
- 554 <u>http://www.fda.gov/OHRMS/DOCKETS/98fr/94-14503.pdf</u>. Accessed 16 November 2011.
- 555 10. FDA. 2003. FDA fact sheet on hand hygiene in retail and food service establishments. Available at:
- 556 <u>http://www.fda.gov/Food/FoodSafety/RetailFoodProtection/IndustryandRegulatoryAssistanceandTrain</u>
- 557 <u>ingResources/ucm135577.htm</u>. Accessed 16 November 2011.
- 558 11. FDA. 2011. Orange book: approved drug products with therapeutic equivalence evaluations.
- Available at: <u>http://www.accessdata.fda.gov/scripts/cder/ob/default.cfm</u>. Accessed 16 November
 2011.
- 12. Hilburn, J., B.S. Hammond, E.J. Fendler and P.A. Groziak. 2003. Use of alcohol hand sanitizer as an
 infection control strategy in an acute care facility. *Am. J. Infect. Control.* 31:109-16.
- Lin, C.-M., F.-M. Wu, H.-K. Kim, M.P. Doyle, B.S. Michaels, and L.K. Williams. 2003. Comparison of
 hand washing techniques to remove *E. coli* and calicivirus under natural or artificial nails. *J. Food. Prot.* 66 (12):2296-301.
- 14. Liu, P., D.R. Macinga, M.L. Fernandez, C. Zapka, H.-M. Hsiao, B. Berger, J.W. Arbogast, and C.L.
- 567 Moe 2011. Comparison of the activity of alcohol-based handrubs against human noroviruses using
- the fingerpad method and quantitative real-time PCR. *Food Environ. Virol.* 3:35-42.
- 569 15. Michaels, B., V. Gangar, C-M Lin and M. Doyle. 2003. Use limitations of alcoholic instant hand
 570 sanitizer as part of a food service hand hygiene program. *Food Service Technol.* 3:71-80.
- 571 16. Montville, R. and D.W. Schaffner. 2011. A meta-analysis of the published literature on the
 572 effectiveness of antimicrobial soaps. *J. Food Prot.* 74 (11):1875-82.
- 573 17. National Park Service. 2011. Colorado River Management Plan, 2011 Commercial Operating
 574 Requirements, page 16.
- 575 18. Park, G.W., L. Barclay, D. Macinga, D. Charbonneau, C.A. Pettigrew and J. Vinje. 2010. Comparative
- efficacy of seven hand sanitizers against murine norovirus, feline calicivirus, and GII.4 norovirus. *J. Food Prot.* 73 (12):2232-8.
- 19. Paulson, D.S., E.J. Fendler, M.J. Dolan and R.A. Williams. 1999. Close look at alcohol gel as an
 antimicrobial sanitizing agent. *Am. J. Infect Control.* 27 (4):332-8.

580 20. Restaino, L. and C.E. Wind. 1990. Antimicrobial effectiveness of hand washing for food

581 establishments. *Dairy, Food Environ Sanitation.* 10 (3):136-41.

- 582 21. Sandora, T.J., E.M. Taveras, M-C. Shih, E.A. Resnick, G.M. Lee, D. Ros-Degnan, and D.A.
- 583 Goldmann. 2005. A randomized, controlled trial of a multifaceted intervention including alcohol-based
- 584 hand sanitizer and hand-hygiene education to reduce illness transmission in the home. *Pediatrics* 116
- 585 (3):587-94.
- Schaffner, D.W. and K.M. Schaffner (2007) Management of risk of microbial cross-contamination
 from uncooked frozen hamburgers by alcohol-based hand sanitizer. *J. Food Prot.* 70 (1):109-13.
- 23. Todd, E.C., B.S. Michaels, D. Smith, J.D. Greig, and C.A. Bartleson. 2010a. Outbreaks where food
- 589 workers have been implicated in the spread of foodborne disease. Part 9.washing and drying of
- 590 hands to reduce microbial contamination. *J. Food Prot.* 73 (10):1937-1955. Available at:
- 591 <u>http://www.ingentaconnect.com/content/iafp/jfp/2010/00000073/00000010/art00020</u>. Accessed 9
 592 November 2011.
- 593 24. Todd, E.C., B.S. Michaels, J. Holah, D. Smith, J.D. Greig, and C.A. Bartleson. 2010b. Outbreaks
- 594 where food workers have been implicated in the spread of foodborne disease. Part 10. alcohol-based
- 595 antiseptics for hand disinfection and a comparison of their effectiveness with soap. J. Food Prot. 73
- 596 (11):2128-2140. Available at:
- 597 http://www.ingentaconnect.com/content/iafp/jfp/2010/00000073/00000011/art00026. Accessed 9
- 598 November 2011.

599 **Table 1** CDC* listing of infectious and communicable diseases transmitted through handling the food

600 supply

			Symptoms that indicate
			infection that could be
		Modes of	transmitted to others
Category	Agent	transmission	through food
Pathogens often	Viruses	 Failure of food 	Diarrhea
transmitted by food	- Norovirus	handlers to:	Vomiting
contaminated by	- Hepatitis A virus	- wash hands,	 Open skin sores, boils
infected persons	- Sapovirus	- wear clean	• Fever
who handle food	Bacteria	gloves, or	 Dark urine
	- Salmonella Typhi	- use clean	Jaundice
	- Shigella species	utensils	
	- Staphylococcus aureus	 Also transmitted 	
	- Streptococcus pyogenes	person to person	
Pathogens	Bacteria	Usually	Acute diarrheal illness
occasionally	- Campylobacter jejuni	intrinsically	
transmitted by food	- Enterohemorrhagic E. coli	contaminated or	
contaminated by	- Enterotoxigenic E. coli	cross-	
infected persons	- Non-typhoidal Salmonella	contaminated	
who handle food,	- Vibrio cholera	during processing	
but <i>usually</i>	- Yersinia enterocolitica	or preparation	
transmitted by	Parasites	 Occasionally 	
contamination at	- Cryptosporidium species	transmitted by	
the source or in	- Entamoeba histolytica	infected food	
food processing or	- Giardia intestinalis	handler with	
by non-foodborne	- Taenia solium	acute diarrhea	
routes		 Bacterial 	
		pathogens often	
		require	
		multiplication in	
		the food before	
		they will cause	
		disease	

601 *Adapted from: CDC (5)

602 **Table 2** Hand contact contributing factors reported for foodborne illness outbreaks 1998-2002 in the

603 United States*

		Bare-h	and	Gloved-	hand	Infected	person
		contact		contact		or carrier	
		n (%	of	n (%	of	n (%	of
Etiology		confirmed)		confirmed)		confirmed)	
Bacterial	Non-typhoidal Salmonella	37	(15)	4	(7)	64	(18)
	Staphylococcus aureus	17	(7)	5	(9)	30	(9)
	Shigella	12	(5)	3	(5)	16	(5)
	Escherichia coli	12	(5)	1	(2)	6	(2)
	Clostridium perfringens	8	(3)	2	(4)	2	(1)
	Campylobacter	5	(2)	2	(4)	1	(<1)
	Vibrio parahaemolyticus	2	(1)	1	(2)	1	(<1)
	Bacillus cereus	1	(<1)	1	(2)	1	(<1)
	Streptococcus	0	(0)	0	(0)	1	(<1)
	Total Bacterial	94	(40)	19	(35)	122	(35)
Viral	Norovirus	129	(54)	30	(55)	202	(58)
	Hepatitis A	13	(5)	4	(7)	16	(5)
	Total Viral	142	(59)	34	(62)	218	(62)
Parasitic	Giardia intestinalis	1	(<1)	0	(0)	2	(1)
Multiple etiologies		2	(1)	1	(2)	7	(2)
Total con	firmed etiology	239	-	55	-	349	-
Unknown	etiology	526	-	132	-	251	-

*Adapted from: CDC (4)

- 605 **Table 3** Advantages and disadvantages of *in vivo* and *in vitro* tests to demonstrate efficacy of hand
- 606 hygiene solutions.

Test method	Advantages	Disadvantages
In vivo	Closer to clinical endpoints	Significant person-to-person variation
(uses human	 May demonstrate impact of full hand 	 Expensive and difficult to conduct
subjects)	hygiene procedure (i.e., rinsing,	Concerns with human exposure to
	friction, duration)	certain pathogens
In vitro	• Typically less variable than in vivo	• Further removed from clinical
(does not use	methods	endpoints
human subjects)	 Can study more organisms in a 	
	controlled manner	
	Less expensive	

608 **Table 4** What encourages / discourages desired behaviors regarding *how* to perform hand hygiene?

Potential barriers	Handwashing	Hand antiseptic or alternative		
Water temperature	Too hot or cold discourages Just right encourages	Not applicable		
Type of product (Like or dislike scent, feel etc.)	How well does it lather? Does it cause dry hands or maintain skin health? Does it sting?	Does it make hands sticky? Does it cause dry skin or maintain skin health? Does it sting?		
Towel vs. hand dryer	Slow drier discourages Empty or malfunctioning towel dispensing discourages	Drier not applicable. Towel may be needed (wipes or two-step procedure), thus availability or malfunctioning situations are similar.		
Urgency / pressure / motivation	Must go to sink to perform	Can be applied "on the go" for a one step process		
Proximity of product and equipment, ease of reaching	Need sink (plumbing), soap, drying equipment	Portable or easy installation in multiple locations. Potentially closer to work station.		
Training (need to know how, when and why)	Applies equally. Potentially more material available on procedure.	Applies equally		
Supplies available and working	Applies equally	Applies equally		
Laziness	Applies equally	Applies equally		
Ease – automated vs. manual. Method of dispensing	Automatic options may encourage or discourage. Must be functioning	Automated dispensing quicker when functioning. Must be functioning.		
Time	Takes too long (perception)	Fewer steps for single application		
Double handwashing	Takes too long	Applicable to two-step process		
Policy – management commitment and enforcement	Applies equally	Applies equally		
Job aids – detailed instructions	Applies equally	Applies equally		
Hand hygiene signs	Applies equally	Applies equally		
Behavior modeled by co- workers and management	Can motivate or de-motivate	Can motivate or de-motivate		
Requirement for employment	Applies to both	Applies to both		
Existence of regulations	Encourages policy, not employees	Currently hinders adoption		
Visible / type of soil	Adjust to soil type	Appropriate for visibly clean hands only. May be unpleasant on heavily soiled hands		
Pleasant experience	Applies equally	Applies equally		

609 (Note: effectiveness of the application is not considered in this comparison)

611 **Table 5** What encourages / discourages desired behaviors regarding *when* to perform hand hygiene?

612	(Note: effectiveness of the application is not considered in this comparison)
-----	---

Potential barriers	Handwashing	Hand antiseptic or alternative
Perceived need	Wash when hands look or feel dirty. Workers wash to protect themselves (e.g., after clearing a messy table)	Perceived need for single step may change because this should be done on clean hands. Likely the same for a two step process
Touch points / requirements (too many)	Applies equally	Applies equally
Policy– management commitment and enforcement	Applies equally	Applies equally
Training – urgency	Applies equally	Applies equally
Focus on the why	Applies equally	Applies equally
Clarifying specifics in Food Code / misinterpretations	Potentially reduce confusion on requirements	Potentially reduce confusion on requirements and interpretation of regulations
In concert with glove use / confusion with glove use	Potentially reduce confusion on requirements	Potentially reduce confusion on requirements
Clarifying examples	Potentially reduce confusion on requirements	Potentially reduce confusion on requirements
Motivation	Applies equally	Applies equally
Proximity / ease	Need sink (plumbing), soap, drying equipment	Portable or easy installation in multiple locations. Potentially closer to work.
When need to wash – settings / relevance	When they look or feel dirty	Apply to visibly clean hands
Requirement to stay employed	Applies equally	Applies equally
Visibility of kitchen	Depends on customers – are they more interested in the food techniques or hygiene?	Less time away from food prep
Pleasant experience (some products make hands feel and / or smell good)	Applies equally	Applies equally
Hand antiseptic is a second barrier	May be tempted to skip washing	May do it more often if it is quicker

- 614 **Table 6** What encourages / discourages desired behaviors regarding *why* to perform hand hygiene?
- 615 (Note: effectiveness of the application is not considered in this comparison)

Potential barriers	Handwashing	Hand antiseptic or alternative
Buy-in / encouragement	Handwashing is a	Explaining the differences of when
	recognized foundation for	handwashing is appropriate versus when
	food safety and healthy	alternatives are appropriate may complicate
	living.	the message and confuse the "Why"
Expected practice / culture	Applies equally	Applies equally
of hand hygiene		
Not a lot of training tools;	Applies equally	Applies equally
print training vs. activity		
based		
Trainer effectiveness	Applies equally	Applies equally
Oral vs. written	Applies equally	Applies equally
Proximity	Getting staff to the sink	Getting to the product
Lack of motivation	Applies equally	Applies equally
Expectation of customers	Visibility of kitchen	Visibility of kitchen
Pleasant experience	Applies equally	Applies equally
Location / availability of	Applies equally	Applies equally, but may be easier to have
supplies		sanitizer available in some locations
Equipment working	Applies equally	Applies equally
correctly		

617 **Figure 1** Feline calicivirus transfer from inoculated finger pads to ham, lettuce and stainless steel

619